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Abstract

We propose NeuFace, a 3D face mesh pseudo annotation method on videos via neural
re-parameterized optimization. Despite the huge progress in 3D face reconstruction methods,
generating reliable 3D face labels for in-the-wild dynamic videos remains challenging. Using
NeuFace optimization, we annotate the per-view/-frame accurate and consistent face meshes
on large-scale face videos, called the NeuFace-dataset. We investigate how neural re-
parameterization helps to reconstruct 3D facial geometries, well complying with input facial
gestures and motions. By exploiting the naturalness and diversity of 3D faces in our dataset,
we demonstrate the usefulness of our dataset for 3D face-related tasks: improving the
reconstruction accuracy of an existing 3D face reconstruction model and learning 3D facial
motion prior. Project page: https://kim-youwang.github.io/neuface

1 Introduction

A comprehensive understanding of dynamic 3D human faces has been a long-standing problem in computer
vision and graphics. Reconstructing and generating dynamic 3D human faces are key components for diverse
tasks such as face recognition (Weyrauch et al., 2004; Blanz & Vetter, 2003), face forgery detection (Cozzolino
et al., 2021; Rössler et al., 2018; 2019), video face editing (B R et al., 2021; Kim et al., 2018; Tewari et al.,
2020), facial motion or expression transfer (Thies et al., 2015; 2016a; 2018), XR applications (Elgharib et al.,
2020; Wang et al., 2021; Richard et al., 2021; Saito et al., 2024; Sung-Bin et al., 2024a;b; EunGi et al., 2024),
and human avatar generation (Raj et al., 2020; Ma et al., 2021; Youwang et al., 2022; 2024).

Recent studies (Wood et al., 2021; 2022; Bae et al., 2023; Yeh et al., 2022) have shown that reliable datasets
of facial geometry, even synthetic or pseudo ones, can help achieve a comprehensive understanding of “static”
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Table 1: NeuFace-dataset provides reliable 3D face mesh annotations for MEAD, VoxCeleb2 and CelebV-
HQ videos, which is significantly richer than the existing datasets in terms of the scale, diversity and
naturalness. Abbr. {seq.: sequences, id.: identities, Dur.: duration, Env.: environment, emo.: emotion}

Dataset No. seq. [K] No. id Dur. [hrs] Env. No. emo.
Existing 3D face video datasets
BIWI 3D 1.1 14 1.4 Lab. 12
COMA 0.15 12 0.1 Lab. 12
VOCASET 0.5 12 0.5 Lab. 1
NeuFace-dataset (ours) 1,245 21,048 2,090 Wild + Lab. 24

⊢ NeuFaceMEAD 210 48 25 Lab. 24
⊢ NeuFaceVoxCeleb2 1,000 6,000 2,000 Wild -
⊢ NeuFaceCelebV-HQ 35 15,000 65 Wild 8

3D faces. However, there is currently a lack of reliable and large-scale datasets containing “dynamic” and
“natural” 3D facial motion annotations. The lack of such datasets becomes a bottleneck for studying inherent
facial motion dynamics or 3D face reconstruction tasks by restricting them to rely on weak supervision, e.g.,
2D landmarks or segmentation maps. Accurately acquired 3D face video data may mitigate such issues but
typically requires intensive and time-consuming efforts with carefully calibrated multi-view cameras and
controlled lighting conditions (Yoon et al., 2021; Joo et al., 2015; 2018; Cudeiro et al., 2019; Ranjan et al.,
2018). Few seminal works (Fanelli et al., 2010; Ranjan et al., 2018; Cudeiro et al., 2019; Zielonka et al., 2022)
take such effort to build 3D face video datasets. Despite significant efforts, the existing datasets obtained
from such restricted settings are limited in scale, scenarios, diversity of actor identity and expression, and
naturalness of facial motion (see Table 1).

In contrast to 3D, there are an incomparably large amount of 2D face video datasets available online (Wang
et al., 2020; Nagrani et al., 2017; Chung et al., 2018; Zhu et al., 2022; Parkhi et al., 2015; Cao et al., 2018;
Karras et al., 2019; Wang et al., 2021; 2019; Liu et al., 2015), which are captured in diverse in-the-wild
environments but without 3D annotations. As successfully demonstrated in some 3D tasks (Fang et al., 2021;
Bouazizi et al., 2021; Huang et al., 2022; Müller et al., 2021; Hassan et al., 2019; Bayer et al., 2016; Ng et al.,
2022) as well as other analysis tasks (Miech et al., 2019; Nagrani et al., 2022; Lee et al., 2021), leveraging
off-the-shelf reconstruction models is a common practice to obtain pseudo ground-truth of such in-the-wild
videos that were already captured. They showed that high-quality and large-scale pseudo ground-truth is
sufficient to achieve the state-of-the-art at the time of their works. Similarly, a naïve approach is to construct
a large-scale 3D face video dataset by curating existing 2D video datasets and obtain 3D face annotations
with off-the-shelf face reconstruction models (Feng et al., 2021; Danecek et al., 2022). However, existing 3D
face reconstruction models have limitations for reconstructing temporally smooth or multi-view consistent 3D
face meshes from videos. This is because state-of-the-art face reconstruction models are typically trained on
single-view static images only with 2D supervision; thus fail to extrapolate to faces having rare poses and
yield jittered motion due to the per-frame independent inference.

To address these difficulties, we propose NeuFace optimization, which reconstructs accurate and spatio-
temporally consistent parametric 3D face meshes on videos. By re-parameterizing 3D face meshes with neural
network parameters, NeuFace infuses spatio-temporal cues of dynamic face videos on 3D face reconstruction.
NeuFace optimizes spatio-temporal consistency losses and the 2D landmark loss to acquire reliable face mesh
pseudo-labels for videos.

Using this method, we create the NeuFace-dataset, the first large-scale, accurate and spatio-temporally
consistent 3D face meshes for videos. Our dataset contains 3D face mesh pseudo-labels for large-scale,
multi-view or in-the-wild 2D face videos, MEAD (Wang et al., 2020), VoxCeleb2 (Chung et al., 2018), and
CelebV-HQ (Zhu et al., 2022), achieving about 1,000 times larger number of sequences than existing facial
motion capture datasets (see Table 1). Our dataset inherits the benefits of the rich visual attributes in
large-scale face videos, e.g., various races, appearances, backgrounds, natural facial motions, and expressions.
We assess the fidelity of our dataset by investigating the cross-view vertex distance and the 3D motion
stability index. We demonstrate that our dataset contains more spatio-temporally consistent and accurate
3D meshes than the competing datasets built with strong baseline methods. To demonstrate the potential of
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our dataset, we present two applications: (1) improving the accuracy of a face reconstruction model and
(2) learning a generative 3D facial motion prior. These applications highlight that NeuFace-dataset can be
further used in diverse applications demanding high-quality and large-scale 3D face meshes. We summarize
our main contributions as follows:

• NeuFace, an optimization method for reconstructing accurate and spatio-temporally consistent 3D face
meshes on videos via neural re-parameterization.

• NeuFace-dataset, the first large-scale 3D face mesh pseudo-labels constructed by curating existing
large-scale 2D face video datasets with our method.

• Demonstrating the benefits of NeuFace-dataset: (1) improve the accuracy of off-the-shelf face mesh
regressors, (2) learn 3D facial motion prior for long-term face motion generation.

2 Related work

3D face datasets. To achieve a comprehensive understanding of dynamic 3D faces, large-scale in-the-wild
3D face video datasets are essential. There exist large-scale 2D face datasets that provide expressive face
images or videos (Wang et al., 2020; Nagrani et al., 2017; Chung et al., 2018; Zhu et al., 2022; Parkhi
et al., 2015; Cao et al., 2018; Karras et al., 2019; Liu et al., 2015) with diverse attributes covering a wide
variety of appearances, races, environments, scenarios, and emotions. However, most 2D face datasets do not
have corresponding 3D annotations, due to the difficulty of 3D face acquisition, especially for in-the-wild
environments. Although some recent datasets (Yoon et al., 2021; Ranjan et al., 2018; Cudeiro et al., 2019;
Zielonka et al., 2022; Wood et al., 2021) provide 3D face annotations with paired images or videos,1 they are
acquired in the restricted and carefully controlled indoor capturing environment, e.g., laboratory, yielding
small scale, unnatural facial expressions and a limited variety of facial identities or features. Achieving
in-the-wild naturalness and acquiring true 3D labels would be mutually exclusive in the real-world. Due to
the challenge of constructing a real-world 3D face dataset, FaceSynthetics (Wood et al., 2021) synthesizes
large-scale synthetic face images and annotations derived from synthetic 3D faces, but limited in that they
only publish images and 2D annotations without 3D annotations, which restrict 3D face video applications.
In this work, we present the NeuFace-dataset, the first large-scale 3D face mesh pseudo-labels paired with
the existing in-the-wild 2D face video datasets, resolving the lack of the 3D face video datasets.

3D face reconstruction. To obtain reliable face meshes for large-scale face videos, we need accurate 3D
face reconstruction methods for videos. Reconstructing accurate 3D faces from limited visual cues, e.g., a
monocular image, is an ill-posed problem. Model-based approaches have been the mainstream to mitigate the
ill-posedness and have advanced with the 3D Morphable Models (3DMMs) (Blanz & Vetter, 1999; Paysan
et al., 2009; Li et al., 2017) and 3DMM-based reconstruction methods (Zollhöfer et al., 2018; Egger et al.,
2020; Feng et al., 2021; Danecek et al., 2022; Zielonka et al., 2022).

3D face reconstruction methods can be categorized into learning-based and optimization-based approaches.
The learning-based approaches, e.g., (Feng et al., 2021; Danecek et al., 2022; Zielonka et al., 2022; Sanyal
et al., 2019a; an Trãn et al., 2016), use neural networks trained on large-scale face image datasets to regress
the 3DMM parameters from a single image. The optimization-based approaches (Blanz & Vetter, 2003; Huber
et al., 2015; Chen et al., 2013; Wood et al., 2022; Thies et al., 2015; Gecer et al., 2019) optimize the 2D
landmark or photometric losses with extra regularization terms directly over the 3DMM parameters. Given a
specific image, these methods overfit to 2D landmarks observations, thus showing better 2D landmark fit
than the learning-based methods. These approaches are suitable for our purpose in that we need accurate
reconstruction that best fits each video. However, the regularization terms are typically hand-designed with
prior assumptions that disregard the input image. These regularization terms often introduce mean shape
biases (Feng et al., 2021; Pavlakos et al., 2019; Bogo et al., 2016; Joo et al., 2020), due to their independence
to input data, which we call the data-independent prior. Also, balancing the losses and regularization is
inherently cumbersome and may introduce initialization sensitivity and local minima issues (Joo et al., 2020;
Pavlakos et al., 2019; Bogo et al., 2016; Choutas et al., 2020).

1MICA released the medium-scale 3D annotated face datasets, but only a single identity parameter per video is provided, not
the facial poses or expression parameters, i.e., static 3D faces.
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Figure 1: NeuFace optimization. Given 2D face videos, NeuFace optimizes spatio-temporally consistent
3D face meshes. NeuFace updates the neural network parameters that re-parameterize the 3D face meshes
with 2D landmark loss and spatio-temporal consistency losses.

Instead of hand-designed regularization terms, we induce such effects by optimizing re-parameterized 3DMM
parameters with a 3DMM regression neural network, called NeuFace optimization. Such network parameters
are trained from large-scale real face images, which implicitly embed strong prior from the trained data.
Thereby, we can leverage the favorable properties of the neural re-parameterization: 1) an input data-dependent
initialization and prior in 3DMM parameter optimization, 2) less bias toward a mean shape, and 3) stable
optimization robust to local minima by over-parameterized model (Cooper, 2021; Du et al., 2019a; Neyshabur
et al., 2018; Allen-Zhu et al., 2019; Du et al., 2019b). Similar re-parameterizations were proposed in (Joo
et al., 2020; Grassal et al., 2022), but they focus on the human body in a single image input with fixed 2D
landmark supervision, or use MLP to re-parameterize the per-vertex displacement of the 3D face. We extend
it to dynamic faces in the multi-view and video settings by sharing the neural parameters across views and
frames, and devise an alternating optimization to self-supervise spatio-temporal consistency.

3 NeuFace: a 3D face mesh optimization for videos via neural re-parameterization
In this section, we introduce the neural re-parameterization of 3DMM (Sec. 3.1) and NeuFace, an optimization
to obtain accurate and spatio-temporally consistent face meshes from videos (Sec. 3.2). We discuss the benefit
of neural re-parameterization (Sec. 3.3), and show NeuFace’s reliability as a face mesh annotator (Sec. 3.4).

3.1 Neural re-parameterization of 3D face meshes

We use FLAME (Li et al., 2017), a renowned 3DMM, as a 3D face representation. 3D face mesh vertices M and
facial landmarks J for F frame videos can be acquired with the differentiable skinning: M, J=FLAME(r, θ, β, ψ),
where r ∈ R3, θ ∈ R12, β ∈ R100 and ψ ∈ R50 denote the head orientation, face poses, face shape and
expression coefficients, respectively. For simplicity, FLAME parameters Θ can be represented as, Θ =
[r,θ,β,ψ]. We further re-parameterize the FLAME parameters Θ and weak perspective camera parameters
p ∈ RF ×3 for video frames {If }F

f=1, into a neural network, Φ, with parameters w, i.e., [Θ, p] = Φw({If }F
f=1).

We use the pre-trained DECA (Feng et al., 2021) or EMOCA (Danecek et al., 2022) encoder for Φw.

3.2 NeuFace optimization

Given the NF frames and NV views of a face video {If,v}NF ,NV

f=1,v=1, NeuFace aims to find the optimal neural
network parameter w∗ that re-parameterizes accurate, multi-view and temporally consistent face meshes (see
Fig. 1). The optimization objective is defined as:

w∗ = arg min
w

L2D + λtempLtemporal + λviewLmultiview, (1)
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where {λ∗} denotes the weights for each loss term. Complex temporal and multi-view dependencies among
variables in the losses would make direct optimization difficult (Afonso et al., 2010; Salzmann, 2013; Zhang,
1993). We ease the optimization of Eq. (1) by introducing latent target variables for self-supervision in an
Expectation-Maximization (EM) style optimization (see Sec. B for the details of EM style optimization).

2D landmark loss. For each iteration t, we compute L2D as a unary term, following the conventional 2D
facial landmark re-projection loss (Feng et al., 2021; Danecek et al., 2022) for the landmarks in all different
frames and views:

L2D = 1
NF NV

∑NF ,NV

f=1,v=1∥π(Jt
f,v(w), pt

f,v) − jf,v∥1, (2)

where π(·, ·) denotes the weak perspective projection, and J(w) is the 3D landmark from Φw(·). Eq. (2)
computes the pixel distance between the pre-detected 2D facial landmarks j and the regressed and projected
3D facial landmarks π(J(w), p). j stays the same for the whole optimization. We use FAN (Bulat &
Tzimiropoulos, 2017) to obtain j with human verification to reject the failure cases.

Temporal consistency loss. Our temporal consistency loss reduces facial motion jitter caused by per-
frame independent mesh regression on videos. Instead of a complicated Markov chain style loss, for each
iteration t, we first estimate latent target meshes that represent temporally smooth heads in Expectation step
(E-step). Then, we simply maximize the likelihood of regressed meshes to its corresponding latent target in
Maximization step (M-step). In E-step, we feed {If,v}NF ,NV

f=1,v=1 into the network Φwt and obtain FLAME and
camera parameters, [Θt, pt]. For multiple frames in view v, we extract the head orientations rt

:,v, from Θt and
convert it to the unit quaternion qt

:,v. To generate the latent target, i.e., temporally smooth head orientations
q̂t

:,v, we take the temporal moving average over qt
:,v. In M-step, we compute the temporal consistency loss as:

Ltemporal = 1
NF NV

∑NF ,NV

f=1,v=1∥qt
f,v − q̂t

f,v∥2, (3)

where q is the unit-quaternion representation of r. We empirically found that such simple consistency loss is
sufficient enough to obtain temporal smoothness while allowing more flexible expressions.

Figure 2: Multi-view bootstrapping. Given initial
mesh predictions for each view in frame f , we align and
merge the meshes depending on the confidence. The boot-
strapped mesh serves as a target for computing Lmultiview.

Multi-view consistency loss. Although the
aforementioned L2D roughly guides the multi-view
consistency of landmarks, it cannot guarantee the
consistency for off-landmark or invisible facial re-
gions across views. Therefore, for multi-view cap-
tured face videos (Wang et al., 2020), we leverage
a simple principle to obtain consistent meshes over
different views: face geometry should be consis-
tent across views at the same time. The goal is to
bootstrap the per-view estimated noisy meshes by
referencing the visible, or highly confident facial
regions across different views. Analogous to the
temporal consistency loss, in M-step, we compute
the multi-view consistency loss as follows:

Lmultiview = 1
NF NV

∑NF ,NV

f=1,v=1∥Mt
f,v − M̂t

f ∥1,

(4)
where M̂t

f denotes the latent target mesh vertices estimated in E-step of each iteration. In E-step, given
vertices Mt

f,: of multiple views in frame f , we interpret the vertex visibility as the per-vertex confidence.
We assign the confidence score per each vertex by measuring the angle between the vertex normal and the
camera ray. We set the vertices as invisible if the angle is larger than the threshold τa, and the vertex has a
deeper depth than τz, i.e., z < τz. We empirically choose τa = 72◦, τz = −0.08. To obtain the latent target
mesh M̂t

f , we align per-view estimated meshes to the canonical view, and bootstrap the meshes by taking
the weighted average of Mt

f,: depending on the confidence (see Fig. 2). With this, Eq. (4) constrains the
vertices of each view to be consistent with M̂t

f .
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Figure 3: Data-dependent gradient. NeuFace optimization obtains a richer gradient map regarding the
pixel-level facial details (1st row). Thus, our method achieves more expressive and accurately meshes than
the baseline (2nd row).

Overall process. We first estimate all the latent variables, q̂ and M̂ as E-step. With the estimated
latent variables as the self-supervision target, we optimize Eq. (1) over the network parameter w as M-step.
This single alternating iteration updates the optimization parameter wt→wt+1 at iteration t. We iterate
alternating E-step and M-step until convergence. After convergence, we obtain the final solution [Θ∗, p∗] by
querying video frames to the optimized network, i.e., [Θ∗, p∗]=Φw∗({If,v}NF ,NV

f=1,v=1).

3.3 Why is NeuFace optimization effective?

Note that one can simply update FLAME parameters directly with the same loss in Eq. (1). Then, why do
we need neural re-parameterization of 3D face meshes? We claim such neural re-parameterization allows
data-dependent mesh update, which the FLAME fitting cannot achieve. To support our claim, we analyze the
benefit of our optimization by comparing it with the solid baseline.
Baseline: FLAME fitting. Given the same video frames {If,v}NF ,NV

f=1,v=1 and the same initial FLAME and
camera parameters [Θb, pb] as NeuFace2, we implement the baseline optimization as:

[Θ∗
b, p∗

b] = arg min
Θb,pb

L2D + λtempLtemporal + λviewLmultiview + λrLr + λθLθ + λβLβ + λψLψ, (5)

where the losses L2D, Ltemporal and Lmultiview are identical to the Eqs. (2), (3), and (4). Lr, Lθ, Lβ and Lψ,
are the common regularization terms used in (Li et al., 2017; Wood et al., 2022).

Data-dependent gradients for mesh update. We analyze the data-dependency of the baseline and
NeuFace optimization by investigating back-propagated gradients. For the FLAME fitting (Eq. (5)), the
update rule for FLAME parameters Θb at optimization step t is as follows:

Θt+1
b = Θt

b − α
∂L

∂Θt
b

, (6)

where L denotes the sum of all the losses used in the optimization. In contrast, given video frames {If,v}NF ,NV

f=1,v=1,
or simply I, the update for our NeuFace optimization is as follows:

wt+1 = wt − α
∂L
∂wt

= wt − α( ∂L
∂Θt

w
· ∂Θt

w
∂wt

) = wt − α( ∂L
∂Θt

w
· ∂

∂wt
Φwt(I)), (7)

where Θt
w is re-/over-parameterized by the neural network Φwt , i.e., Θt

w = Φwt(I).

By comparing the back-propagated gradient terms in Eqs. (6) and (7), we can intuitively notice that the
update for NeuFace optimization (Eq. (7)) is conditioned by input I, yielding data-dependent mesh update.
With data-dependent gradient ∂

∂wt Φwt(I), NeuFace optimization may inherit the implicit prior embedded
in the pre-trained neural model, e.g., DECA (Feng et al., 2021), learned from large-scale real face images.
2To conduct a fair comparison with a strong baseline, we initialize [Θb, pb] as the prediction of the pre-trained DECA. This is
identical to NeuFace optimization (Eq. (1)); only the optimization variable is different.
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This allows NeuFace optimization to obtain expressive 3D facial geometries, well complying with input facial
gestures and motions.

It is also worthwhile to note that, thanks to over-parameterization of Φw(·) w.r.t. Θ, we benefit from the
following favorable property. For simplicity, we consider a simple l2-loss and a fully connected ReLU network,3
but it is sufficient to understand the mechanism of NeuFace optimization.
Proposition 1 (Informal). Global convergence. For the input data x ∈ [0, 1]n×din , paired labels y∗ ∈
Rn×dout , and an over-parameterized L-layer fully connected network Φw(·) with ReLU activation and uniform
weight widths, consider optimizing the non-convex problem: arg minw L(w) = 1

2 ∥Φw(x) − y∗∥2
2. Under some

assumptions, gradient descent finds a global optimum in polynomial time with high probability.

Proposition 1 can be derived by simply re-compositing the results by Allen-Zhu et al. (2019). Its proof sketch
can be found in the appendix. This hints that our over-parameterization helps NeuFace optimization achieve
robustness to local minima and avoid mean shape biases.

To see how data-dependent gradient of NeuFace affects the mesh optimization, we visualize the absolute
magnitude of the back-propagated gradients of each method in Fig. 3. The baseline optimization produces a
sparse gradient map along the face landmarks, which disregards the pixel-level facial details, e.g., wrinkles or
facial boundaries. In contrast, NeuFace additionally induces the dense gradients over face surfaces, not just
sparse landmarks, which are helpful for representing image-aligned and detailed facial expressions on meshes.
Thanks to the rich gradient map, our method yields more expressive and accurately image-aligned meshes
than the baseline.

3.4 How reliable is NeuFace optimization?

Many recent face-related applications (Ng et al., 2022; Khakhulin et al., 2022; Feng et al., 2022) utilize a
pre-trained, off-the-shelf 3D face reconstruction model or the FLAME fitting (Eq. (5)) as a pseudo ground-
truth annotator. Compared to such conventional face mesh annotation methods, we discuss how reliable
Neuface optimization is. Specifically, we measure the vertex-level accuracy of the reconstructed face meshes
by NeuFace optimization on the motion capture videos, VOCASET (Cudeiro et al., 2019).

Method DECA FLAME fitting (Eq. (5)) NeuFace (ours)
MPVE [mm] ↓ 38.4 31.5 30.6

Figure 4: Given the ground-truth meshes, our
optimization reconstructs more vertex-level accu-
rate meshes than the competing methods.

VOCASET is a small-scale facial motion capture
dataset that provides registered ground-truth mesh se-
quences. Given the ground-truth mesh sequences from
the VOCASET, we evaluate the Mean-Per-Vertex-Error
(MPVE) (Cho et al., 2022; Lin et al., 2021b;a) of face
meshes obtained by pre-trained DECA, FLAME fitting
and our method. In Fig. 4, NeuFace optimization achieves
more vertex-level accurate meshes than other methods,
i.e., lower MPVE. Note that FLAME fitting still achieves
competitive MPVE with ours, which shows that it is a
valid, strong baseline. Such favorable mesh accuracy of
NeuFace optimization motivates us to leverage it as a
reliable face mesh annotator for large-scale face videos,
and build the NeuFace-dataset.

4 The NeuFace-dataset

The NeuFace-dataset provides accurate and spatio-temporally consistent face meshes of existing large-scale
2D face video datasets; MEAD (Wang et al., 2020), VoxCeleb2 (Chung et al., 2018), and CelebV-HQ (Zhu
et al., 2022). Our datasets are denoted with NeuFace{∗} and summarized in Table 1. The NeuFace-dataset is,
namely, the largest 3D face mesh pseudo-labeled dataset in terms of the scale, naturalness, and diversity of
facial attributes, emotions, and backgrounds. Please refer to the appendix for the visualization of the dataset,
acquisition method, and filtering details.
3By sacrificing the complexity of proof, the same conclusion holds for ResNet (Allen-Zhu et al., 2019).
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Table 2: Quantitative evaluation. NeuFace-D/E-datasets (ours) significantly outperform the other datasets
in multi-view consistency (CVD), temporal consistency (MSI3D), and the 2D landmark accuracy (NME).
Abbr. {L: landmark, V: vertex.}

MEAD VoxCeleb2 CelebV-HQ

Dataset MSIL
3D ↑ MSIV

3D ↑ CVD ↓ NME ↓ MSIL
3D ↑ MSIV

3D ↑ NME ↓ MSIL
3D ↑ MSIV

3D ↑ NME ↓
Base-dataset (Eq. (5)) 0.034 0.053 0.192 4.34 0.034 0.056 3.32 0.030 0.047 3.65
DECA-dataset 0.011 0.016 0.209 4.65 0.028 0.044 4.78 0.012 0.018 5.34
NeuFace-D-dataset (ours) 0.206 0.305 0.103 2.58 0.095 0.137 2.19 0.054 0.074 2.55
EMOCA-dataset 0.010 0.016 0.199 5.42 0.003 0.004 4.77 0.005 0.007 5.57
NeuFace-E-dataset (ours) 0.209 0.312 0.104 2.28 0.028 0.048 2.38 0.053 0.077 2.86

Figure 5: Multi-view consistent face meshes. NeuFace-dataset contains multi-view consistent meshes
compared to the DECA-dataset. L- and R- denote Left and Right, and 30 and 60 denote the camera view
angles from the center.

4.1 Fidelity evaluation of the NeuFace-dataset

We assess the fidelity of our dataset in terms of spatio-temporal consistency and landmark accuracy. We
make competing datasets and compare the quality of the generated mesh annotations. First, we compose
the strong baseline, Base-dataset, by fitting FLAME with Eq. (5). We also utilize pre-trained DECA and
EMOCA as mesh annotators and built DECA-dataset and EMOCA-dataset, respectively. Finally, we build
two versions of our dataset, i.e., NeuFace-D, and NeuFace-E, where each dataset is generated via Eq. (1)
with DECA and EMOCA for the neural re-parameterization Φw, respectively.

Temporal consistency. We extend the Motion Stability Index (MSI) (Ling et al., 2022) to MSI3D and
evaluate the temporal consistency of each dataset. MSI3D computes a reciprocal of the motion acceleration
variance of either 3D landmarks or vertices and quantifies facial motion stability for a given NF frame video,
{If }NF

f=1, as MSI3D({If }NF

f=1)= 1
K

∑
i

1
σ(ai) , where ai denotes the 3D motion acceleration of i-th 3D landmarks

or vertices, σ(·) the temporal variance, and K the number of landmarks or vertices. If the mesh sequence
has small temporal jittering, i.e., low motion variance, it has a high MSI3D value. We compute MSI3D for
landmarks and vertices, i.e., MSIL

3D and MSIV
3D, respectively. Table 2 shows the MSIL

3D and MSIV
3D averaged

over the validation sets. For the VoxCeleb2 and CelebV-HQ splits, the NeuFace-D/E-dataset outperform the
other datasets in both MSI3Ds. Remarkably, we have improvements on MSI3D more than 20 times in MEAD.
We postulate that the multi-view consistency loss also strengthens the temporal consistency for MEAD. In
other words, our losses would be mutually helpful when jointly optimized. We discuss it through loss ablation
studies in the later section (Sec. 4.2).

Multi-view consistency. We visualize the predicted meshes over different views in Fig. 5, where per-view
independent estimations are presented, not a single merged one. We verify that the NeuFace-D-dataset
contains multi-view consistent meshes compared to the DECA-dataset, especially near the mouth region. See
appendix for the comparison of the EMOCA-dataset and NeuFace-E-dataset. As a quantitative measure,
we compute the cross-view vertex distance (CVD), i.e., the vertex distance between two different views, i
and j, in the same frame f : ∥Mf,i−Mf,j∥1. We compare the averaged CVD of all views in Table 2. CVD is
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Table 3: Ablation results on the different loss functions. We evaluate the effect of our proposed
spatio-temporally consistent losses by changing the configurations of the loss combinations. Optimizing
full loss functions shows favorable results on CVD and NME while outperforming MSI compared to other
configurations. We cannot analyze the effect of Lmultiview for VoxCeleb2 and CelebV-HQ since they are taken
in the single-camera setup. Abbr. L: landmark, V: vertex.

NeuFace MEAD (Wang et al., 2020) VoxCeleb2(Chung et al., 2018) CelebV-HQ (Zhu et al., 2022)

L2D Lmultiview Ltemporal CVD ↓ MSIL
3D ↑ MSIV

3D ↑ NME ↓ MSIL
3D ↑ MSIV

3D ↑ NME ↓ MSIL
3D ↑ MSIV

3D ↑ NME ↓
✓ 0.333 0.015 0.022 2.44 0.001 0.001 2.71 0.001 0.003 3.88
✓ ✓ 0.110 0.015 0.023 2.49 - - - - - -
✓ ✓ 0.294 0.176 0.250 2.56 0.095 0.137 2.19 0.54 0.074 2.55
✓ ✓ ✓ 0.103 0.206 0.305 2.58 - - - - - -
DECA (Feng et al., 2021) 0.209 0.011 0.016 4.65 0.028 0.044 4.78 0.012 0.018 5.34

Figure 6: Effect of the Lmultiview. By
optimizing our full objectives (Eq. (1)), the
generated meshes are fitted to each of its 2D
landmarks and are also multi-view consis-
tent. Views are aligned for the visualization.

Figure 7: Comparisons of cross-view vertex dis-
tance. We quantitatively show the multi-view consis-
tency of our method by averaging the cross-view vertex
distance on the validation set. L- and R- denote Left
and Right, respectively, and 30 and 60 denote the view
angles which the video is captured from.

only evaluated on the MEAD dataset, which is in a multi-camera setup. While the DECA-/EMOCA-dataset
results in high CVD, the NeuFace-dataset shows significantly lower CVD on overall views.

2D landmark accuracy. A trivial solution to obtain low CVD and high MSI3D is to regress the same mean
face meshes across views and frames regardless of the input image. To verify such occurrence, we measure the
landmark accuracy of the regressed 2D facial landmarks using the normalized mean error (NME) (Sagonas
et al., 2016). The NeuFace-D/E-dataset outperform the other datasets in NME, i.e., contain spatio-temporally
consistent and accurately landmark-aligned meshes.

4.2 Ablation on loss functions

We analyze the effect of our proposed spatio-temporal consistency losses in the NeuFace optimization,
Lmultiview, and Ltemporal. We evaluate the quality of the meshes obtained by optimizing each of the loss
configurations. All the experiments are conducted on the same validation set as the Table 2.

Only L2D. We start by optimizing the loss function with only 2D facial landmark re-projection error, L2D.
As we optimize L2D, the obtained meshes achieve lower NME than DECA over the whole validation set (see
Table 3). However, we observe that this may break both multi-view and temporal consistencies, degrading
the CVD and MSI compared to that of DECA. The qualitative results in Fig. 6 also show that optimizing
only L2D reconstructs more expressive but inconsistent meshes over different views. Therefore, we propose
loss functions that can induce multi-view and temporal consistencies to the meshes during the optimization.

L2D+Lmultiview. By optimizing Lmultiview along with L2D, we obtain significantly lower CVD than DECA
and the meshes optimized with only L2D. We have not optimized any regularization term which induces
temporal consistency; thus, MSIs remain low. As discussed in Sec. 4.1, a trivial solution for achieving low
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Figure 8: Spatio-temporal consistency comparison. NeuFace reconstructs multi-view consistent 3D
faces (left); reduced misalignment for faces (each view is aligned to the canonical pose, color-coded and
alpha-blended), and temporally stabilized motion (right); reduced jitter than the competing method (we
concatenate vertical cyan line in each frame along time), while being accurate.

CVD is to regress mean faces over different views. However, the optimization with L2D+Lmultiview achieves
low CVD while comparable NME to the L2D optimization, which proves not to be falling into a trivial
solution. Note that Lmultiview can only be measured in the multi-camera setup, e.g. MEAD.

L2D+Ltemporal. As we optimize Ltemporal with L2D, we observe substantial improvements in MSIs over
the whole validation set. Interestingly, jointly optimizing these two losses can further achieve better NME
in VoxCeleb2 and CelebV-HQ datasets. We postulate that, for in-the-wild challenging cases, e.g., images
containing extreme head poses or diverse background scenes, only optimizing L2D could fail to regress proper
meshes, as it may generate meshes that break out of the facial regions. On the other hand, Ltemporal could
prevent the regressed mesh from breaking out from the facial regions to a certain extent.

Full loss function. With the observations of the effect on each proposed loss, we optimize the full loss
functions (NeuFace optimization), L2D+Lspatial+Ltemporal, on MEAD. The quantitative results in Table 3
show that NeuFace optimization achieves comparable NME while outperforming CVD and MSIs compared to
other settings. As analyzed in Sec. 4.1, we postulate that our proposed spatio-temporal losses are mutually
helpful for generating multi-view and temporally consistent meshes.

The advantage of jointly optimizing all the losses can also be found in the qualitative results; the reconstructed
face meshes are well-fitted to its 2D face features, e.g., landmarks and wrinkles, and multi-view consistent
(See Fig. 6). In addition, we compare the view-wise averaged CVD between NeuFace optimization and DECA
in Fig. 7. While DECA results in high CVD, especially for the views with self-occluded regions, such as
Left-60 and Right-60, NeuFace shows significantly lower CVD on overall views. We also evaluate the meshes
reconstructed by pre-trained DECA (Feng et al., 2021) for comparison (see Fig. 8).

5 Applications of the NeuFace-datasets

In this section, we demonstrate the usefulness of the NeuFace-dataset. We learn generative facial motion
prior from the large-scale, in-the-wild 3D faces in our dataset (Sec. 5.1). Also, we boost the accuracy of an
off-the-shelf face mesh regressor by exploiting our dataset’s 3D supervision (Sec. 5.2).

5.1 Learning 3D human facial motion prior

A facial motion prior is a versatile tool to understand how human faces move over time. It can generate
realistic motions or regularize temporal 3D reconstruction (Rempe et al., 2021). Unfortunately, the lack of
large-scale 3D face video datasets makes learning facial motion prior infeasible. We tackle this by exploiting
the scale, diversity, and naturalness of the 3D facial motions in our dataset.

Learning facial motion prior. We learn a 3D facial motion prior using HuMoR (Rempe et al., 2021)
with simple modifications. HuMoR is a conditional VAE (Sohn et al., 2015) that learns the transition
distribution of human body motion. We represent the state of a facial motion sequence as the combination
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Figure 9: Long-term facial motion generation using learned motion prior. The motion prior trained
with small-scale, diversity-limited VOCASET fails to generate natural motion, while the motion prior trained
with NeuFaceVoxCeleb2 generates diverse and natural long-term facial motion.

Table 4: Quantitative evaluation of learned facial motion prior. We evaluate the naturalness and
diversity of generated long-term motions from different motion prior models. HuMoR-Face trained with
existing facial motion capture dataset, e.g., VOCASET, fails to generate natural and diverse facial motions.

HuMoR-Face trained w/ Scale Environment FD ↓ APD [cm] ↑
Existing motion capture dataset
VOCASET (Cudeiro et al., 2019) Small In-the-lab 420.92 -
Our dataset
NeuFaceMEAD Large In-the-lab 78.99 3.56
NeuFaceVoxCeleb2 Large In-the-wild 31.32 52.69

of FLAME parameters and landmarks in the NeuFace-dataset and train the dedicated face motion prior,
called HuMoR-Face. We train three motion prior models (HuMoR-Face) with different training datasets,
i.e., VOCASET (Cudeiro et al., 2019), NeuFaceMEAD, and NeuFaceVoxCeleb2. Please refer to appendix and
HuMoR (Rempe et al., 2021) for the details.

Long-term face motion generation. We evaluate the validity and generative power of the learned
motion prior by generating long-term 3D face motion sequences (10.0s). Long-term motions are generated by
auto-regressive sampling from the learned prior, given only a starting frame as the condition (see Fig. 9).
VOCASET provides small-scale, in-the-lab captured meshes, thus limited in motion naturalness and facial
diversity. Accordingly, the HuMoR-Face trained with VOCASET fails to learn a valid human facial motion
prior and generates unnatural motion. Using only the subset, NeuFaceMEAD, the long-term stability of head
motion has significantly enhanced. Please refer to the supplementary video for motion comparisons.

We quantitatively evaluate HuMoR-Face models using two metrics: motion Fréchet distance (FD) (Ng et al.,
2022) and average pairwise distance (APD) (Aliakbarian et al., 2020; Rempe et al., 2021). FD measures the
naturalness like the FID score (Heusel et al., 2017) and APD measures the diversity of generated motions.
For APD, we generate 50 long-term motions from the same initial state and compute the mean landmark
distance between all pairs of samples. HuMoR-Face models trained with large-scale and diverse motions, i.e.,
the NeuFace-dataset, show superior performance in naturalness and diversity (see Table 4). Specifically, the
HuMoR-Face trained with NeuFaceVoxCeleb2 shows substantial enhancement on APD. APD is not reported for
the HuMoR-Face trained with VOCASET, since the model fails to generate realistic motion. We attribute
such high-quality motion prior to the benefit of the NeuFace-dataset: large-scale facial motion annotations.
Further, exploiting diverse in-the-wild, dynamic, and natural motion annotation from NeuFaceVoxCeleb2 helps
HuMoR-Face learn real-world motion prior and surprisingly generate much diverse and dynamic motions.
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Table 5: Improving the face reconstruction accuracy. (a) NeuFace-dataset helps the model reconstruct
more occlusion robust and expressive 3D faces than the original model. Green and red dots denote visible
and invisible 3D landmarks, respectively. (b) As a result, DECANeuFace, 2D, DECANeuFace,3D achieve better
3D reconstruction accuracy than DECAoriginal.

DECAoriginal DECANeuFace,2D DECANeuFace,3D

Error [mm] (↓)
Model Test-opt Median Mean Std
3DMM-CNN (Tuan Tran et al., 2017) CVPR 2017 1.84 2.33 2.05
PRNet (Feng et al., 2018) ECCV 2018 1.50 1.98 1.88
RingNet (Sanyal et al., 2019b) CVPR 2019 1.21 1.54 1.31
MGCNet (Shang et al., 2020) ECCV 2020 1.31 1.87 2.63
3DDFA-V2 (Guo et al., 2020) ECCV 2020 ✓ 1.23 1.57 1.39
DenseLandmarks (Wood et al., 2022) ECCV 2022 ✓ 1.02 1.28 1.08
MICA (Zielonka et al., 2022) ECCV 2022 ✓ 0.90 1.11 0.92
DECAoriginal (Feng et al., 2021) SIGGRAPH 2021 1.18 1.46 1.25
DECANeuFace,2D (Ours) 1.15 1.44 1.26
DECANeuFace,3D (Ours) 1.11 1.38 1.19

(a) (b)

5.2 Improving the 3D reconstruction accuracy

Due to the absence of large-scale 3D face video datasets, existing face mesh regressor models utilize limited
visual cues, such as 2D landmarks or segmentations. Thus, we utilize the NeuFace-dataset to add direct 3D
supervision to enhance the performance of such a model.

3D supervision with the NeuFace-dataset. We implement the auxiliary 3D supervision as conventional
3D vertex and landmark losses (Kolotouros et al., 2019; Cho et al., 2022; Lin et al., 2021b;a). Given
regressed and our annotated mesh vertices, M, M̂ ∈ RNM ×3, and regressed and our annotated 3D landmarks,
J, Ĵ ∈ RNJ ×3, the auxiliary 3D losses are computed as: LM

3D= 1
NM

∥M−M̂∥2, LJ
3D= 1

NJ
∥J−Ĵ∥2, where NM ,

NJ is the number of mesh vertices and landmarks, respectively.

Enhancement on 3D reconstruction accuracy. By fine-tuning DECA (Feng et al., 2021) using the
images of MEAD (Wang et al., 2020), VoxCeleb2 (Chung et al., 2018) and CelebV-HQ (Zhu et al., 2022), with
and without our 3D supervision, we obtain DECANeuFace,3D and DECANeuFace,2D. Following the evaluation
protocol of the NoW benchmark (Sanyal et al., 2019a), we reconstruct 3D faces for the provided images
via each model and report the 3D reconstruction errors. In Table 5, our DECANeuFace,3D shows lower 3D
reconstruction error than DECAoriginal and DECANeuFace,2D.

6 Discussion, Limitation and Conclusion

We develop NeuFace, an optimization for generating accurate and spatio-temporally consistent 3D face mesh
pseudo-labels on videos with a provable optimal guarantee. Moreover, with the technique, we build the
NeuFace-dataset, a large-scale 3D face meshes paired with in-the-wild 2D videos.

We demonstrate the potential of the diversity and naturalness of our NeuFace-dataset as a training dataset to
learn generative 3D facial motion prior. Also, we improve the reconstruction accuracy of a de-facto standard
3D face reconstruction model using our dataset. Note that the focus of our NeuFace optimization is to build
the 3D face dataset for videos. The experiment for the static face reconstruction in Table 5 was conducted to
demonstrate the potential application of our method and dataset. Given our emphasis on video face data, our
model may not obtain the best accuracy for static face reconstruction. However, it is important to note that
our method still shows a marked improvement over existing data. This underscores the effectiveness of the
NeuFace-dataset in enhancing 3D face reconstruction. We expect NeuFace to open up new opportunities by
providing large-scale, real-world 3D face video data, the NeuFace-dataset, as a reliable data curation method.
The failure cases of NeuFace optimization could occur when the 2D video contains extreme degradations,
e.g., motion blur, low resolution, extremely (>50%) occluded, so that the 2D keypoint detection fails. Please
note that when we construct the NeuFace-dataset, we tackle these cases with automatic filtering followed by
human verification (will be discussed in appendix Sec. A), which guarantees the reliability of the dataset.
Since 2D landmark human annotations are relatively cheaper than any other signals, we think using better
2D landmarks can mitigate this limitation.
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mitigates such issues since our dataset is acquired on top of large-scale in-the-wild face video datasets,
which typically rely on internet videos. Such video datasets are diverse in terms of ethnicity, gender, facial
appearances, and actions when compared to the small/medium-scale 3D facial motion capture datasets. Since
our dataset is acquired based on the existing public video datasets (Wang et al., 2020; Chung et al., 2018;
Zhu et al., 2022), all the rights, licenses, and permissions follow the original datasets. Moreover, we will
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Appendix

We present additional details, analysis, results, and experiments that are not included in the main paper due
to the space limit. Also, the attached video explains and demonstrates the main idea of NeuFace and video
samples for the NeuFace-dataset.

A Implementation details

We provide detailed configurations for implementations and experiments in the main paper.

NeuFace optimization details. NeuFace optimization is composed of a neural network Φw and the
optimizing part. For the network Φw, we use a pre-trained DECA (Feng et al., 2021) or a pre-trained
EMOCA (Danecek et al., 2022) encoder network. Overall optimization takes about 8 min. for 7 views, ∼120
frames of videos, and about 2.5 min. for 1 view, ∼120 frames of videos.

NeuFace-dataset acquisition. We provide reliable 3D face mesh annotations for large-scale face video
datasets: MEAD (Wang et al., 2020), VoxCeleb2 (Chung et al., 2018), and CelebV-HQ (Zhu et al., 2022).
We optimize our full objective (Eq. (1)) to acquire FLAME meshes for the datasets with a multi-view camera
setup, e.g., MEAD. Otherwise, we optimize (Eq. (1)) with λview=0. We automatically discard the sequences
if the optimization yields out-of-distribution shape parameters, i.e., the L2-norm of shape parameters deviates
largely from the pre-built distribution (Li et al., 2017), ∥β∥2>1.0, or if the 2D landmark detector (Bulat &
Tzimiropoulos, 2017) fails to capture the faces. After subsequent human verification, the NeuFace-dataset
achieves <0.1% of failure rate on upon criteria, supporting the reliable quality of our dataset.

NeuFace dataset includes 24 diverse emotion/expression categories. Compared to indoor motion capture
datasets (BIWI 3D, COMA, VOCASET), our dataset has a greater variety of emotion/expression categories.
Moreover, our dataset contains 3D faces in natural talking scenarios, resulting in higher diversity within these
categories. NeuFace-dataset contains at least 40 different facial attributes, including hairstyles and accessories
such as glasses. While traditional motion capture datasets do not disclose the number of facial attributes,
their facial attribute diversity is incomparably limited since they contain a small number of identities, and
indoor environments. Unlike traditional motion capture datasets, which are recorded in controlled indoor
environments with fixed camera views and lighting, the NeuFace-dataset uses in-the-wild YouTube videos,
providing a much greater diversity of backgrounds.

Facial motion prior. As one of our dataset’s prominent applications, we introduced the learning of 3D
facial motion prior, called HuMoR-Face (Sec.5.1 in the main paper). We first pre-process 3D face meshes
in the NeuFace-dataset. We compute root orientation, face pose angles, 3D landmark positions, and their
velocities, respectively. Then, we represent the state of a moving human face as x = [ϕ, ϕ̇,θ, J, J̇], where
ϕ, ϕ̇ denotes head root orientation and its velocity, θ denotes the FLAME face pose parameters, and J, J̇
denotes facial joint and its velocity, respectively.

The generative facial motion prior is trained to predict the facial motion state, xt+1, given the current state
xt as a condition. We consider the NeuFace holdout test split as the real motion distribution and compute the
FD for the generated motions. We do not consider VOCASET as the real motion distribution for computing
FD. It is limited in diversity and naturalness, which contradicts FD’s purpose of measuring the naturalness
of generated motions. Our NeuFace holdout test split is much larger and more diverse than VOCASET.

Fine-tuning face mesh regressor. As our dataset’s another application, we improve the accuracy of
the pre-trained DECA model with our NeuFace-dataset and its 3D annotations. Specifically, we fine-tune
the pre-trained DECA parameters with our NeuFace-dataset and the auxiliary 3D supervisions proposed
in the main paper (L795-797). During fine-tuning, we use an adjusted learning rate, 1 × 10−5, which is ten
times smaller than training DECA from scratch. Note that there exist the DECA-coarse model and the
DECA-detail model. Unfortunately, there are known issues in reproducing DECA-detail due to the absence
of VGGFace2 and the training recipe (DECA GitHub issues: bit.ly/3jj2psn, bit.ly/3HIiVf0).
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Table S1: Average vs. Median operation. we conduct an ablation study on a subset of the MEAD
dataset, using a median operation instead of the average for the temporal consistency loss.

Loss config. CVD ↓ NME↓

Temporal loss (Average) 0.0981 3.03
Temporal loss (Median) 0.0985 3.09

Table S2: Ablation on the design choices. (a) Optimizing photometric loss (Lphoto) with the NeuFace
optimization results in performance degradation. (b) The identity code (β) gradually converges over the
iterations, although we do not manually force shared identity regularization.

Loss config. CVD ↓ MSIL
3D ↑ MSIV

3D ↑ NME↓

NeuFace 0.103 0.206 0.305 2.58
NeuFace+2 · Lphoto 0.106 0.205 0.299 2.62
NeuFace+5 · Lphoto 0.112 0.195 0.282 3.69

(a) Ablation on the photometric loss (b) Std. of β over the iterations

B Ablation on the design choices

In our proposed NeuFace optimization, the temporal consistency loss employs a temporal moving average
to estimate latent target meshes that represent temporally smooth heads. To assess the effectiveness of the
temporal moving average operation, we conduct an ablation study using a median operation instead of the
average on a subset of the MEAD dataset. In Table S1, both methods—temporal moving average and median
operation in the temporal window—demonstrated comparable performance in terms of NME and CVD, with
no significant difference in the optimization results. This finding suggests that the choice of operation has a
negligible impact on the optimization process.

Although our proposed NeuFace optimization utilizes a simple combination of losses, we find that it is
surprisingly effective for constructing accurate pseudo 3D face data. For example, we observe that the use of
photometric loss (Lphoto) has a negligible effect, as demonstrated in Table S2 (a). In fact, Lphoto tends to
degrade performance, with larger values of this loss leading to greater degradation. We postulate that this
might be due to the impact of self-shadows and non-Lambertian reflection caused by lighting and noise in
video data, which could interfere with robust optimization. Interestingly, we also reveal that without explicit
regularization for shared identities across frames in videos, the identity codes tend to converge automatically,
as shown in Table S2 (b). This finding suggests that adding shared identity regularization may be unnecessary.
Despite the effectiveness of our proposed NeuFace optimization, we believe that exploring additional losses to
further refine the optimization process could be a worthwhile future direction.

We proposed an EM-style optimization for our NeuFace optimization. In each optimization step t, we compute
latent target variables M̂t

f and q̂t
f,v at E-step using multi-view bootstrapping or temporal smoothing. The

latent target variables serve as the supervision for spatio-temporal consistency losses at M-step. Our EM-style
losses are as follows (Eq. (3) and Eq. (4) in the main):

Ltemporal,ours =
∑NF ,NV

f=1,v=1∥qt
f,v − q̂t

f,v∥2, Lmultiview,ours =
∑NF ,NV

f=1,v=1∥Mt
f,v − M̂t

f ∥1,

where f , v, NF , and NV denote the temporal frame index, view index, total number of frames, and total
number of views, respectively. Also, M, q denotes the mesh vertices and head rotation quaternion, respectively.
Please refer to Sec. 3.2 in the main draft for more details.

The naïve, non EM-style way to implement our optimization is as follows:
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1. Ltemporal,naive : Iterate through all the head rotation quaternion and compute frame-wise, Markov
chain style head rotation error, without introducing latent target variable.

2. Lmultiview,naive : Iterate through all the multi-view meshes in the same time frame and compute
view-wise vertex error, without introducing latent target variable.

More formally, the losses for non EM-style optimization are as follows:

Ltemporal,naïve =
NV∑
v=1

NF −1∑
f=1

∥∥qt
f,v − qt

f+1,v

∥∥
2 , Lmultiview,naïve =

NF∑
f=1

NV −1∑
i=1

NV∑
j=i+1

∥Mt
f,i − Mt

f,j∥1.

We conduct an ablation experiment that compares each optimization performance on a subset of the MEAD
dataset. In Table S3, our EM-style optimization achieves better mesh quality in terms of temporal smoothness,
cross-view vertex consistency, and landmark accuracy compared to the non EM-style optimization baseline.

Table S3: Ablation on EM-style optimization

Optim. style MSIL
3D ↑ MSIV

3D ↑ CVD ↓ NME ↓
Non EM-style optim. 0.208 0.333 0.233 4.26
EM-style optim. (ours) 0.284 0.462 0.201 3.36

C NeuFace optimization with EMOCA

Recall that we can replace the neural parameterization of face meshes with another neural model. Specifically,
we use EMOCA (Danecek et al., 2022), which is built upon DECA with an additional expression encoder.
We change the neural network from DECA to EMOCA and optimize over it with our spatio-temporal and
landmark losses. In Table 2 and Sec. 4 in the main paper, we discussed about the quantitative quality of
NeuFace-E-dataset.

Figure S1: Multi-view consistency: EMOCA vs. NeuFace-E. We visualize the meshes obtained by
EMOCA (Danecek et al., 2022) and NeuFace-E. By aligning the meshes to face the same direction, we can
clearly notice that NeuFace-E obtains multi-view consistent meshes compared to EMOCA.

Qualitatively, we visualize the rendered meshes over different views as in Fig. S1. NeuFace-E-dataset (3rd
row) contains multi-view consistent meshes over views compared to the meshes obtained by EMOCA inference
(2nd row). Specifically, EMOCA produces huge discrepancies in mouth area across the views, while our
method is more consistent. Moreover, our method reconstructs more accurate meshes, especially for the
shape of the nose and face contour.

22



Published in Transactions on Machine Learning Research (08/2024)

D NeuFace vs. Video 3D Face Tracking Method

We verify the favorable quality of NeuFace-datasets by comparing it with the meshes obtained by the state-of-
the-art method, MICA with a tracker (Zielonka et al., 2022) (MICA+T), among the existing methods (Cao
et al., 2013; 2015; Thies et al., 2016b; Zielonka et al., 2022). MICA+T jointly optimizes 3DMM, cameras,
and textures with landmark and photometric losses, and statistic regularizers. In Table S4, NeuFace performs
better than MICA+T in CVD & NME with comparable MSI. Also, faster optimization makes NeuFace
preferable when annotating large-scale videos.

Table S4: Evaluation on MEAD: MICA vs. NeuFace

CVD ↓ MSI3D ↑ NME ↓ Optim. time (7 views)
MICA+T 0.049 0.349 2.98 60 min.
NeuFace-D-dataset 0.0094 0.277 2.58 8 min.

E Analysis on NeuFace

In this section, we introduce and validate our design choices for NeuFace optimization, through analysis.
Specifically, we build a strong baseline and support our choice of “re-parameterized” face mesh optimization
method for NeuFace in Sec. E.1. Next, we provide a proof sketch of the provable global minima convergence
of NeuFace optimization in Sec. E.2.

E.1 FLAME fitting vs. NeuFace optimization

Recall that NeuFace re-parameterizes the 3DMM, i.e., FLAME (Li et al., 2017) to the neural parameters
(represented as DECA (Feng et al., 2021)), then optimizes over them to obtain accurate 3D face meshes
for videos. Following the prior arts in the parametric human body reconstruction literature (Bogo et al.,
2016; Pavlakos et al., 2019; Kolotouros et al., 2019), there exists a simple method to optimize the parametric
model; 3DMM parameter fitting. Thus, we implement FLAME fitting as a solid baseline and compare the
quantitative and qualitative results with NeuFace optimization to analyze and support our choice of neural
re-parameterization.

Details of baseline FLAME fitting. Given the initial FLAME and camera parameters, [Θb, pb] =
[rb,θb,βb,ψb, pb], we implement the direct FLAME optimization as:

[Θ∗
b, p∗

b] = arg min
Θb,pb

L2D + λtempLtemporal + λviewLmultiview + λrLr + λθLθ + λβLβ + λψLψ,

where the losses L2D, Ltemporal, and Lmultiview are identical to the losses discussed in the main paper
(Eqs. 2,3,4). We can obtain the initial FLAME parameters for the optimization in two ways: (1) initialize from
mean parameters and (2) initialize from pre-trained DECA (Feng et al., 2021) predictions. We empirically
found that initialization with mean FLAME parameters frequently fails when the input images contain
extreme head poses. Thus, we choose to initialize FLAME parameters from the pre-trained DECA predictions,
thus providing a plausible initialization for a fair comparison. Also, following the convention (Li et al., 2017),
we optimize FLAME parameters in a coarse-to-fine manner. For the earlier stage, we fix FLAME parameters
that control local details, i.e., θb, βb, and ψb, and optimize the global head orientation, rb, and camera
parameters pb. Then we fix camera parameters and optimize other FLAME parameters jointly at a later
stage to fit the local details.

Since we initialize FLAME parameters and camera parameters from the pre-trained DECA predictions,
i.e., initial [Θb, pb] in Eq. (5). Accordingly, the meshes obtained by the FLAME fitting achieve better
spatio-temporal consistency and 2D landmark accuracy than the meshes obtained by a pre-trained DECA
without any post-processing.

Qualitative result. In Fig. S2(a), NeuFace-dataset contains much expressive and image-aligned meshes, e.g.,
wrinkles and face boundaries. On the other hand, the meshes obtained by the direct FLAME optimization show
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(a) (b)
Figure S2: FLAME fitting vs. NeuFace optimization. (a) NeuFace optimization obtains much
expressive and pixel-level aligned meshes than the baseline FLAME fitting. (b) We observe NeuFace
optimization induces richer and data-dependent gradients compared to the sparse gradients of baseline.

mean shape-biased 3D faces. We explain such results in terms of the data-independency of the direct FLAME
optimization. The baseline method requires several regularization terms based on the prior, pre-built from
external 3D datasets, which is data-independent (Eq. (5)). Such data-independent regularization encourages
the optimized FLAME parameters to stay close to the mean of parameter distributions, regardless of the
facial characteristics on input images. Balancing such regularization terms with other losses is cumbersome
and prone to obtain mean shape faces.

In contrast, recall that NeuFace re-parameterizes the FLAME parameters as the pre-trained neural network,
such as DECA (Feng et al., 2021). Such re-parameterization allows NeuFace to update face meshes in an input-
image-conditioned manner, called data-dependent mesh update (Sec. 3.3 in the main paper). Figure S2(b)
visualizes the data-dependent gradient of our optimization. While the baseline shows similar gradient patterns
throughout three input images, NeuFace optimization produces diverse gradient maps according to input
images. Such rich and data-dependent gradients consider high-dimensional visual features induced from the
input RGB values in the optimization process, yielding accurate and expressive 3D faces.

E.2 Proposition 1: Convergence Property to Global Minima

Proposition 1 in this work is a straightforward variation of the main result of Allen-Zhu et al. (Allen-
Zhu et al., 2019). Before providing the proof sketch of Proposition 1. We describe the assumptions
needed to prove Proposition 1. For simplicity, we consider a simple l2-based regression loss and a L-
layer fully connected ReLU network Φ−→W(·) having a uniform weight width size of m. For the training
data consisting of vector pairs {(xi, y∗

i )}i∈[n], the network has the batched input of x={xi}i∈[n], where
n is the batch size, xi∈[0, 1]din , and y∗

i ∈ Rdout , the output of Φ−→W(x) ∈ Rdout , and the weights −→W =
(W1∈Rm×din , W{2,··· ,L−1}∈Rm×m, WL∈Rdout×m).4

Assumption 1. Without loss of generality, ∀i, ∥xi∥ = 1 and ∥y∗
i ∥ ≤ O(1).

Assumption 2. The pretrained neural network weights −→W(0) are assumed to be started from the val-
ues distributed normally, i.e., considered as a sample instance from a Gaussian distribution. Specifically,
[W(0)

l ]i,j ∼ N (0, 2/row[Wl]) for l ∈ {1, · · · , L − 1} and [W(0)
L ]i,j ∼ N (0, 1/row[WL]) for every (i, j), where

the operator row[·] returns the row size of the input matrix.

Assumption 2 appears to be restrictive by those standard deviations, but it is not. The assumptions cover a
fairly broad range of weight distribution scenarios. For larger standard deviations, we can always set a small
norm for x’s in Assumption 1 without loss of generality, and vice versa.
4We can consider that the biases are included in {W} without loss of generality.
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Under these assumptions, we restate Proposition 1 in the main paper.
Proposition 1 (Global Convergence). For any ϵ ∈ (0, 1], δ∈

(
0, O( 1

L )
]
, given an input data {x, y} and the

neural network Φ−→W(·) over-parameterized such that m ≥ Ω
(
poly(n, L, δ−1) · dout

)
, consider optimizing the

non-convex regression problem: arg min−→W L(−→W) = 1
2 ∥Φ−→W(x) − y∥2

2.
Under the above assumptions, with high probability, the gradient descent algorithm with the learning rate
ρ = Θ

(
dδ

poly(n,L)m

)
finds a point −→W∗ such that L(−→W∗) ≤ ϵ in polynomial time.

Proof sketch. We first introduce the following useful lemmas needed to prove the proposition.
Lemma 1 (Theorem 3 in (Allen-Zhu et al., 2019)). With probability at least 1 − e−Ω(m/Ω(poly(n,L,δ−1)), it
satisfies for every ℓ ∈ [L], every i ∈ [n], and every −→W with ∥

−→W −
−→W(0)∥2 ≤ 1

poly(n,L,δ−1) , where ∥
−→W∥2 =

maxl∈[L] ∥Wl∥2,

Ω
(

L(−→W) · δm

dn2

)
≤ ∥∇L(−→W)∥2

F ≤ O

(
L(−→W) · Lnm

d

)
.

This lemma suggests that, when we are close to the starting point −→W(0) of the neural network, there is no
saddle point or critical point of any order. Specifically, for example, given a fixed δ, d, n and L, when we have
the same error L for two different neural networks with respective widths of m1 and m2, where m1 < m2,
then the lower bound of the gradient with m2 is larger than that of m1 with a better chance. This means
that neural networks with larger widths are likely to have a lower chance of local minima.

This hints that any local search (e.g., gradient descent) does not suffer from any local minima or saddle
points for larger m, which implies a more likely chance of avoiding local minima, i.e., finding global minima.
However, the local search does not guarantee to decrease the loss function yet.

With the favorable property of Lemma 1, if we have an additional guarantee of loss decrease with gradient
descent, we can prove the convergence to global minima. To derive objective-decrease guarantee in optimization
theory, a notion of smoothness is typically needed; thus, we introduce the following lemma.
Lemma 2 (Theorem 4 of (Allen-Zhu et al., 2019)). With probability at least 1 − e−Ω(m/poly(L,log m)), we have:
for every −→W† ∈ (Rm×m)L with ∥

−→W† −
−→W(0)∥2 ≤ 1

poly(L,log m) ,
and for every −→W′ ∈ (Rm×m)L with ∥

−→W′∥2 ≤ 1
poly(L,log m) , the following inequality holds

L(−→W†+−→W′) ≤ L(−→W†) +
〈

∇L(−→W†), −→W′
〉

+ O( nL2m
d )∥−→W′∥2

2 + poly(L)
√

nm log m√
d

· ∥
−→W′∥2

√
L(−→W†).

This lemma states the semi-smoothness property of the objective function L w.r.t. Φ−→W(·) to take into account
non-smoothness introduced by ReLU activation in Φ−→W(·). The semi-smoothness looks similar to the Lipschitz
smoothness except for the first order term ∥

−→W′∥2. Interestingly, when we increase m, the increasing rate of
the first order term is much slower than that of the second order term; thus, the second order term becomes
dominant compared to the first order one, and the semi-smoothness approaches closer to the Lipschitz
smoothness. This means that the neural network is smoother as m goes larger.

Under the assumption that ∥
−→W(t) −

−→W(0)∥F is small (will be verified later), the next step is to combine
Lemma 2 with gradient descent to derive the loss-decrease guarantee. Denoting ∇t = ∇L(−→W(t)), the gradient
descent update rule is defined as: −→W(t+1) = −→W(t) − ρ∇t for a learning rate ρ > 0. Then, from Lemma 2,
putting −→W(t+1) = −→W† + −→W′ and −→W(t) = −→W†, i.e., −→W′ = −ρ∇t, we have

L(−→W(t+1)) ≤ L(−→W(t)) − ρ∥∇t∥2
F + ρ2C1∥∇t∥2

2 + ρC2∥∇t∥2

√
L(−→W(t)))

(where C1 = O( nL2m
d ), C2 = poly(L)

√
nm log m√
d

)

≤ L(−→W(t)) − ρ∥∇t∥2
F +

(
ρ2C1O

(
nm

d

)
+ ρC2

√
O

(
nm

d

))
L(−→W(t))
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(∥∇t∥2
2 ≤ max

l∈[L]
∥∇Wl

L(−→W(t)))∥2
F ≤ O

(
nm

d

)
L(−→W(t)) from the upper bound in Lemma 1)

= (1 + C3)L(−→W(t)) − ρ∥∇t∥2
F (where C3 = ρ2C1O

(
nm

d

)
+ ρC2

√
O

(
nm

d

)
)

≤
(

1 − Ω
(

ρδm

dn2

))
L(−→W(t))

(by the gradient lower bound from Lemma 1 and our choice of ρ, e.g., ρ = Θ( dδ
n4L2m ))

When we choose the parameters such that Ω
(

ρδm
dn2

)
∈(0, 1), we have L(−→W(t+1))<L(−→W(t)). In other words,

there exists T > 0 such that L(−→W(T )) ≤ ϵ. Examples of convenient parameter choices of m, ρ, and T in
polynomial orders are suggested in Allen-Zhu et al. (2019) to hold Ω

(
ρδm
dn2

)
∈ (0, 1) and the small value

of ∥
−→W(t)−

−→W(0)∥F for every t. This concludes the proof sketch of finding a point −→W∗=−→W(T ) such that
L(−→W∗) ≤ ϵ. □

Remark 1: Global optimality. In Proposition 1, we can set ϵ arbitrarily small. With a very small ϵ, it
suggests that a converged point −→W∗ is a global minimum.

Remark 2: The radius condition between the initial weights and updated one. The spectral
radius bounds for ∥

−→W −
−→W(0)∥F required in Lemmas 2 and 1 appear to be small, it is sufficiently large

enough to completely change the output of the model, considering the large width of size m and the standard
deviation 1√

m
of weight entries in Assumption 2.

Remark 3: Other architectures. Allen-Zhu et al. (2019); Du et al. (2019a) present the recipes to convert
the L-layer fully connected networks to convolutional neural networks and to ResNet by sacrificing the
complexity of proof. Thus, the conclusion of the provable guarantee does not change with such architectural
changes. Thus, the architectures we experimented provably comply with the conclusion of Proposition 1 up
to the choice of the parameters, i.e., global convergence.

Remark 4: Other losses. In the above proof sketch, one of the important pieces is the semi-smoothness in
Lemma 2. While we discuss only with the simple l2 regression loss function, fortunately, the semi-smoothness
already encompasses any choice of Lipschitz smooth cases for the loss functions. Thus, as long as the choice
of the loss function is Lipschitz smooth, the replacement of the loss function does not alter the conclusion of
Proposition 1 even for non-convex losses except the choice of parameters. This hints that our choice of the
multi-task loss in Eq. (1) provably complies with the conclusion of Proposition 1 except the choice of the
parameters.

Remark 5: L vs. m for the over-parameterization. For designing the over-parameterized architecture,
one can control two different parameters L and m.

Obviously, the high probability is achieved with larger m rather than L, but more importantly, the local
minima smoothing phenomenon suggested in the lower bound of Lemma 1 is independent to L.
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F More dataset samples

We present more qualitative samples of NeuFace-dataset, with diverse identities and visual features (see
Fig. S3). Since we cannot deliver expressive and temporally smooth facial motion in images, we strongly
recommend seeing video visualizations for NeuFace-dataset, in the supplementary videos.

Figure S3: NeuFace-dataset is the large-scale 3D face video dataset containing 3DMM annotations for
faces with diverse ethnicity, gender, emotions, and actions. See supplementary videos for the dynamic face
visualizations.
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